Category Archives: fasting

The Fast Lane to Health: How to Detox

Staring at an empty plate is not a requirement of fasting

Just like an oil change for your car, fasting is essential periodic maintenance for your body. 
You’ve got to do it.
If you’re eating the Standard American Diet, full of processed food loaded with artificial ingredients; you’re putting toxins in your body faster than it can eliminate them. These unnatural chemical and mineral compounds are accumulating in all the tissues of your body, and have been for most of your life.
Over time these toxins accumulate inside you until there is a tipping point at which your body is so overloaded that essential systems and functions begin to break down.
This accumulation of toxins from processed food, more than any other source, is what contributes to disease.
This is why fasting was an important part of my anti-cancer regimen.
We all know food is the fuel for our bodies, but what most people don’t realize is that processed food is dirty fuel.
It is not “clean burning” and leaves toxic deposits, causing a lot of internal wear and tear over time.
Not only does your body convert food into energy, but it also uses approximately 1/3 of your energy to digest food.
Would you describe yourself as dependent on caffeine or sugar to get going or stay alert throughout the day?
If you said yes, you may be overeating for your metabolism; and if you’re consistently eating three or more “square” meals per day you may be suffering from a food-induced energy drain.
Ever felt the need to take a nap after a big meal?  That’s what I’m talking about. You may actually be overeating.
I discovered that eating breakfast really sapped my morning energy so I stopped doing it.  Most mornings I just drink a glass of water or Veggie Juiceusuallyeat some fruit around 10 am.  I’ll have a sandwich or Giant Salad for lunch; a Smoothie or fruit for an afternoon snack; and another Giant Salad with some healthy carbs like quinoa, organic brown rice, Manna Bread, or a sweet potato for dinner.
Sometimes with dinner I eat clean organic meat: grass fed beef, wild caught fish, or free-range chicken.  I do eat other stuff too, but that’s in another post.
Anyway, back to fasting…
When you fast, digestion stops and your body basically “switches modes” from digestion mode to house cleaning mode; redirecting energy to where it is needed most.
Imagine worker cells in your body saying “Well, no food to process today, let’s see what needs repair around here.”  That’s essentially what happens.   Instead of focusing energy on digestion, your body begins repairing damaged organs and tissues; breaking down and eliminate toxic deposits; and “resetting” internal processes that are functioning poorly like your metabolism, adrenals, hormones, brain chemistry, etc.
Fasting happens every night when you sleep. Your body focuses on repair, regeneration, and detoxification. That’s why the next morning when you eat, it’s called “Break-Fast”.  Not eating for several days allows this process to continue uninterrupted; compounding the healing benefits.
One way you can improve your nightly regenerative sleep is to eat an early dinner before 7pm and eat nothing else all night until mid-morning or lunchtimethe following day. (Drinking veggie juice or caffeine free herbal tea before bed is fine.)  This gives your body 12-16 hours per day to repair itself.
The Day of Rest:  God instituted one day per week as a day of rest.  Which most of us recognize as Sunday.  Whether it’s sunday or not, I strongly recommend you have one day per week where you do nothing. Literally nothing.  We go to church on Sunday morning eat lunch and then take naps and relax for the rest of the day. Doing nothing may be hard for some who really enjoy working, but your body and brain need a break. The less physical energy you exert, the more energy your body has to repair itself.  Sunday is also a perfect day to fast while you rest, maximizing your body’s regenerative capability. If you eat an early dinner Saturday night and don’t eat again until Monday lunch, that’s a 40 hour fast!  Very doable.
Something else that happens when you fast is that you start burning stored fat for energy (ketosis), so you should experience some weight loss.  That’s one thing most people won’t complain about.  And the more fat you have, the longer you can go without food.
Expect to have low energy during a fast, not because you aren’t eating, but because your body has switched gears and is redirecting all available energy toward repairing itself.  The less energy you consume, the more your body has to use in the healing process.
When you begin to detox, large quantities of toxins and dead bacteria are released into your body faster than it can get them out.  This flood of toxins is going to make you feel bad, but only temporarily.
This is commonly referred to as the 
Healing Crisis or the Herxheimer Reaction.
So expect to feel worse before you feel better. Your body is trying to push toxins out anyway it can: in your sweat, mucus, pee, and poop. You will feel tired and weak and may experience headaches, nausea, irritability, and in severe cases vomiting, upset stomach, pimples, and flu-like symptoms.
The more toxic you are, the worse you’ll feel, but it’s a good thing. Don’t quit! You’ve got to be determined to power through. The first fews days are the hardest, but after that your energy will return and you’ll feel amazing.
Consider taking a week off, or a long weekend with no commitments on the calendar to start your fast.
This is a time when it’s ok to be selfish. You are working on you.
Just focus on relaxing and lounge around while your body does its thing.
Pray and meditate on healing verses from scripture. Watch some funny movies. Sleep alot.
Some complementary activities that will assist in the detox process are massage therapy followed by a mineral bath; visits to a sauna; rebounding; and frequent enemas or colonics to clean out toxins trapped in your colon. Yeah it’s gross, but if you don’t do it, the toxins can end up recirculating in your body, which makes you feel worse and limits the effectiveness of the fast. Sweating helps your body detox faster.
Two basic liquid fasts are water fasts and juice fasts.
A straight water fast is the most powerful health changing action you can take.  I’ve heard stories of people who have beaten stage 4 cancer with a 40 day water fast.
Most of us have no idea what it feels like to go even one day without food.  Water fasting will give you a whole new perspective on the poor and starving people in the world.  But I should note that you’ll only really experience psychological food-additicion hunger and that will only be for a few days. Your stomach will shrink and your hunger will subside. 
Juice Fasting with Veggie Juice is much easier as the juice helps curb your appetite and gives you energy.  I recommend you do this first before attempting a water fast.
“How long should I fast?”4-7 days is common. Some folks go for several weeks, even as long as 90 days. This may sound funny but it’s true. The fatter you are, the longer you can go without food. Fat is the way your body stores energy, which is how our ancestors survived when food was scarce.
I have a high metabolism and very low body fat so I can’t fast for more than 7-10 days.
Detoxing happens in phases: You’ll feel lousy the first few days, then you’ll feel great for a few days, then you may feel lousy again for a day, then great again, and so on.
Fasting is not Starvation
As you fast, your body will break down fats and non-essential tissues first to use for energy.
If you were stranded in a cabin in the winter with no firewood, naturally you would burn the least important items first like chairs, tables etc. You aren’t going to throw your clothes and food on the fire. Your body is the same way. It will burn through what it identifies as the least essential tissue first, like fat, cysts, and tumors. This will happen first before your body experiences true starvation, which is the break down of vital organs and tissue.
Make sure that when you break a fast it is gradual with very small portions of fruit or veggies.  Don’t go pig out. 
Your shrunken stomach will not appreciate it.
Big DisclaimerPlease do not attempt a multi-day fast without reading a book on the subject first.
They will go into a lot more detail than I have here.

And your fast should also be done under medical supervision.  If you take medications, you doctor needs to know what you’re doing.
Check out The Ultimate Organic Master Cleanse Kit . It comes complete with everything you need for a 10 day fast, including the book.
Additional Recommended Reading:
The Miracle of Fasting by Paul Bragg
God’s Chosen Fast by Arthur Wallis

Fasting may protect against disease; some say it may even be good for the brain

By Emma Young — New Scientist, Published: December 31
In 1908, Linda Hazzard, an American with some training as a nurse, published “Fasting for the Cure of Disease,” which claimed that minimal food was the route to recovery from a variety of illnesses, including cancer. Hazzard was jailed after one of her patients died of starvation. But what if she was, at least partly, right?
A new surge of interest in fasting suggests that it might indeed help people with cancer. It might also reduce the risk of developing cancer, guard against diabetes and heart disease, help control asthma and even stave off Parkinson’s disease and dementia.
“We know from animal models,” says Mark Mattson at the National Institute on Aging, “that if we start an intermittent fasting diet at what would be the equivalent of middle age in people, we can delay the onset of Alzheimer’s and Parkinson’s.”
Until recently, most studies linking diet with health and longevity focused on calorie restriction. They have had some impressive results, with the life span of various lab animals lengthened by up to 50 percent after their caloric intake was cut in half. But these effects do not seem to extend to primates. A 23-year study of macaques found that although calorie restriction delayed the onset of age-related diseases, it had no impact on life span. So other factors, such as genetics, may be more important for human longevity.
That’s bad news for anyone who has gone hungry for decades in the hope of living longer, but the finding has not deterred researchers who study fasting. They point out that although fasting obviously involves cutting calories — at least on specific days — it brings about biochemical and physiological changes that daily dieting does not. Besides, calorie restriction may leave people susceptible to infections and biological stress, whereas fasting, done properly, should not.
Some even argue that we are evolutionarily adapted to going without food intermittently. “The evidence is pretty strong that our ancestors did not eat three meals a day plus snacks,” Mattson says. “Our genes are geared to being able to cope with periods of no food.”
Trying out a fast
Fasting will leave you feeling crummy in the short term because it takes time for your body to break psychological and biological habits, researchers say. There isn’t really agreement, though, on what fasting entails. To research this article, I am trying out the “5:2” diet, which allows me 600 calories in a single meal on each of two weekly “fast” days. (The normal recommended daily intake is about 2,000 calories for a woman and 2,500 for a man.) Proving that fasting is not necessarily about losing weight, I am allowed to eat whatever I want on the five non-fast days.
A more draconian regimen than the 5:2 plan has restricted-calorie fasts every other day. Then there’s total fasting, in which participants go without food for one to five days. (Fasting for more than about a week is considered dangerous.) This might be a one-off experience, or repeated weekly or monthly.
Different regimens have different effects on the body. A fast is considered to start about 10 to 12 hours after a meal, when you have used up all the available glucose in your blood and start converting glycogen stored in liver and muscle cells into glucose to use for energy. If the fast continues, there is a gradual move toward breaking down stored body fat, and the liver produces “ketone bodies,” short molecules that are byproducts of the breakdown of fatty acids. These can be used by the brain as fuel. This process is in full swing three to four days into a fast.
Various hormones are also affected. For example, production of insulin-like growth factor 1 (IGF-1) drops early and reaches very low levels by Day 3 or 4. It is similar in structure to insulin, which also becomes scarcer with fasting, and high levels of both have been linked to cancer.
As for treating cancer, Valter Longo, director of the Longevity Institute at the University of Southern California, thinks that short-term complete fasts maximize the benefits. He has found that a 48-hour total fast slowed the growth of five of eight types of cancer in mice, the effect tending to be more pronounced the more fasts the animals undertook.
Fasting is harder on cancer cells than on normal cells, he says. That’s because the mutations that cause cancer lead to rapid growth under the physiological conditions in which they arose, but they can be at a disadvantage when conditions changes. This could also explain why fasting combined with conventional cancer treatment provides a double whammy. Mice with gliomas — very aggressive forms of cancer and the most commonly diagnosed brain tumor in people — were more thantwice as likely to survive a 28-day study if they underwent a 48-hour fast accompanied by radiation therapy as were those that did not fast.
Could fasting prevent cancers from developing in the first place? Evidence is scant.
Longo says there are “very good reasons” why it should. He points out that high levels of IGF-1 and glucose in the blood and being overweight are risk factors for cancer, and they can all be improved by fasting.
Another risk factor is insulin, says Michelle Harvie at Britain’s University of Manchester. Studying a group of women whose family history put them at high risk of developing breast cancer, she put half of them on a diet that cut calories by about 25 percent and half on a 5:2 fast. After six months, both groups showed a reduction in blood insulin levels, but the reduction was greater in the fasting group. Harvie’s team is now analyzing breast biopsies to see whether this translates to fewer of the genetic changes associated with increased cancer risk.
The effect on diabetes
High insulin is also associated with Type 2 diabetes, so perhaps it is no surprise that fasting shows promise there, too. At the Intermountain Heart Institute in Murray, Utah, Benjamin Horne has found that a 24-hour water-only fast, performed monthly, raises levels of human growth hormone. That hormone triggers the breakdown of fat for energy use, reducing insulin levels and other metabolic markers of glucose metabolism. As a result, people lost weight, and their risk of getting diabetes and coronary heart disease was reduced. Alternate-day fasting (with a 500-calorie lunch for women and a 600-calorie meal for men on fast days) has similar benefits, says Krista Varady of the University of Illinois. She has seen improvements in people’s levels of low-density lipoprotein cholesterol, or “bad cholesterol,” and blood pressure in volunteers eating either a low-fat or high-fat diet on “feeding” days.
For people who are overweight, any kind of intermittent fasting diet will probably help reduce the risk of diabetes and cardiovascular problems, Mattson says. In 2007, he found another benefit, too. He put 10 overweight people with asthma on an alternate-day incomplete fast and found that their asthma symptoms improved after just a few weeks. Blood markers of inflammation, including C-reactive protein, also decreased, suggesting that the fast was helping to moderate their overactive immune system.
Whether fasting would benefit normal-weight people with asthma or other conditions associated with an overactive immune response remains to be seen. There is some evidence that alternate-day fasting can lower their levels of blood fat. However, Mattson suspects that with diabetes and cardiovascular disease, fasting may not be as beneficial for people of normal weight as it is for people who are overweight, simply because they are already likely to be in pretty good shape, metabolically speaking.
How the brain reacts
Mattson has, however, identified another effect of fasting that he believes can benefit everyone: It is good for the brain. “If you look at an animal that’s gone without food for an entire day, it becomes more active,” he says. “Fasting is a mild stressor that motivates the animal to increase activity in the brain.” From an evolutionary perspective, this makes sense, because if you are deprived of food, your brain needs to work harder to help you find something to eat.
His studies suggest that alternate-day fasting, with a single meal of about 600 calories on the fast day, can boost the production of a protein called brain-derived neurotrophic factor by 50 to 400 percent, depending on the brain region. This protein is involved in the generation of new brain cells and plays a role in learning and memory. It can also protect brain cells from the changes associated with Alzheimer’s and Parkinson’s. In mice engineered to develop Alzheimer’s-like symptoms, alternate-day fasting begun in middle age delayed the onset of memory problems by about six months. “This is a large effect,” Mattson says, perhaps equivalent to 20 years in humans.
So, what about the common advice to start the day with a good breakfast? Mattson believes it is flawed, pointing out that the studies supporting this idea were based on schoolchildren who usually ate breakfast; a decline in their academic performance might simply be due to the ill effects that occur when people begin fasting.
Mattson skips breakfast and lunch five days a week, then has dinner and normal weekend meals with his family. Varady has tried alternate-day fasting, but she likes to eat dinner with her 18-month-old child and husband, so she does all her eating within an eight-hour period each day.
Harvie sounds a cautious note for anyone thinking of giving fasting a go. “We still don’t know exactly who should be fasting, how often or how many days a week,” she says. Also, it may not be without risks. One study in rats, for example, found that an alternate-day fast for six months reduced the heart’s ability to pump blood.
There is also the fact that fasting is difficult. Varady finds that 10 to 20 percent of people who enroll in her studies drop out, unable to stick to the regime. This may be less of a problem in the future, though. Some researchers are investigating the possibility that you can get some of the health benefits of fasting simply by reducing protein intake.
As I count down the minutes to the end of my fast, I can’t help but wish them success.
This story was produced by New Scientist magazine and can be read in full at


(How Many Hours Per Day Should You Fast And When Should You Eat?)

 By Ori Hofmekler
The intermittent fasting approach has been getting increased recognition these days. But 10 years ago, it was a different story.

When I introduced The Warrior Diet concept about 12 years ago, it was highly criticized by mainstream fitness authorities as an “extreme and dangerous” approach to dieting. Telling people to skip breakfast and lunch was like committing dietary heresy.

The Warrior Diet book was the first to offer a diet plan based on intermittent fasting. Yes, at that time, it felt like I was the only person in the world arguing for substituting the frequent feeding approach of several meals per day with 1 meal per day.

Then, a few years later, studies on intermittent fasting (conducted by Dr. Marc Mattson/NIH) shocked the world with the news that that “radical” pattern of eating yielded a substantial increase in the lifespan of rodents along with outstanding improvements in major health markers including insulin sensitivity, body composition and neuro-regeneration capacity.

And since then, a growing number of health and fitness gurus have been jumping into the IF wagon. Just Google intermittent fasting and check for yourself.

Multiple websites and many bloggers are now claiming credit for their IF plan.

The variations include fasting all day, every other day, every third day, twice per week, once per week, or once every other week. Some recommend skipping breakfast or skipping dinner, whereas others advise ‘eating only when hungry’ or ‘not eating when not hungry’. Incredibly, even Andrew Weil is now blogging in favor of IF. According to Weil, simply eating three meals per day with no snacks should be called in America “a form of intermittent fasting”…yes indeed, to be popular in this country, a diet plan must be easy to follow…

But fasting is never easy. And there is always a reason to avoid fasting. Virtually all IF websites are happy to give you these reasons.
Plenty of reasons (or perhaps excuses) why not to fast

They tell you: don’t fast if you’re hypoglycemic; don’t do that if you’re diabetic; don’t skip meals if you suffer from heartburn, or don’t get yourself overstressed with fasting if you’re already overstressed.

It is also very popular these days to say, “fasting is not for everyone”… hence, if you’re looking for a reason why not to fast, that’s the easiest one to pick.

Note that there are cases that may prohibit long term fasting such as with young children, type I diabetics (on insulin medication), or in the case of clinical myopathy (muscle wasting disease). Nonetheless even in these or similar cases, the exclusion of fasting is not necessarily wise, as fasting could be potentially useful as a therapeutical strategy. Fasting has shown to improve conditions of metabolic disorders, lower the need for insulin medication, and help relieve inflammation.

So how can fasting benefit you? To figure that out, you need to take a look at the science behind fasting. You need to know how fasting induces its beneficial effects on your body, and what meal frequency allows you to take maximum advantage of that.
How fasting benefits your body

Scientists have been acknowledging three major mechanisms by which fasting benefits your body as it extends lifespan and protects against disease:
Reduced oxidative stress – Fasting decreases the accumulation of oxidative radicals in the cell, and thereby prevents oxidative damage to cellular proteins, lipids, and nucleic acids associated with aging and disease.
Increased insulin sensitivity and mitochondrial energy efficiency – fasting increases insulin sensitivity along with mitochondrial energy efficiency, and thereby retards aging and disease which are typically associated with loss of insulin sensitivity and declined mitochondrial energy.
Increased capacity to resist stress, disease and aging – fasting induces a cellular stress response (similar to that induced by exercise) in which cells up-regulate the expression of genes that increase the capacity to cope with stress and resist disease and aging.

There is only one fasting regimen that makes sense in practice. The rest simply don’t.

So given the above, what kind of fasting regimen will benefit you most? If you learn the facts behind human biology and how your body is programmed to thrive, you will realize that almost every popular IF program today including alternate day fasting, once or twice a week fasting and once every other week fasting are in the best case only partial beneficial. Most IF programs cannot and will not yield the results you’re looking for.

The reason: Your body operates around a 24 hour cycle which dictates your innate circadian clock. Most IF programs are not designed to accommodate that cycle.
Most IF programs disregard your innate clock.

Your innate clock is an essential factor in your life as it controls all your circadian rhythms. Called the Suprachiasmatic Nucleus (SCN), it is located in your hypothalamus, where it regulates how your autonomic nervous system operates along with your hormones, your wake and sleep pattern, your feeding behavior and your capacity to digest food, assimilate nutrients and eliminate toxins.

What happens when you go against your innate clock?

If you’re routinely disregarding your innate clock – working during sleeping hours, or feeding at the wrong time – you’ll sooner or later pay the consequences with symptoms that may include disrupted sleep, agitation, digestive disorders, constipation, chronic fatigue, chronic cravings for sweets and carbs, fat gain, and lower resistance to stress.

Note that chronic disruptions in circadian rhythms have been linked with increased risk for chronic inflammatory disease and cancer. Most IF programs overlook this issue. Their timing of feeding is either random or wrong.

But the timing of your feeding is not something you can afford overlooking. There is a dual relationship between your feeding and innate clock. And as much as your innate clock affects your feeding, your feeding can affect your innate clock. Routinely eating at the wrong time will disrupt your innate clock and devastate vital body functions; and you’ll certainly feel the side effects as your whole metabolic system gets unsynchronized.
Your biological feeding time is at night.

So when should be your right feeding time? Your body is programmed for nocturnal feeding. All your activities, including your feeding, are controlled by your autonomic nervous system which operates around the circadian clock. During the day, your sympathetic nervous system (SNS) puts your body in an energy spending active mode, whereas during the night your parasympathetic nervous system (PNS) puts your body in an energy replenishing relaxed and sleepy mode.

These two parts of your autonomic nervous system complement each other like yin and yang. Your SNS, which is stimulated by fasting and exercise, keeps you alert and active with an increased capacity to resist stress and hunger throughout the day. And your PNS, which is stimulated by your nightly feeding, makes you relaxed and sleepy, with a better capacity to digest and replenish nutrients throughout the night. This is how your autonomic nervous system operates under normal conditions.

But that system is highly vulnerable to disruption.

If you eat at the wrong time such as when having a large meal during the day, you will mess with your autonomic nervous system; you’ll inhibit your SNS and instead turn on the PNS which will make you sleepy and fatigued rather than alert and active during the working hours of the day. And instead of spending energy and burning fat, you’ll store energy and gain fat. This is indeed a lose-lose situation. (more information and science references on the human circadian clock in the end of the article) Unfortunately, most IF programs fail to recognize that.
Most IF programs miss the boat.

Let’s take a brief look at some of the most notable IF regimens.

Alternate day fasting
This program seems to be the most difficult to handle. Followers of this regimen have been complaining of a significant increase in hunger and a chronic excruciating desire to eat on their fasting day. But what makes this IF program even more problematic is the adaptability issue – as followers seem to be just as hungry on the last day of fasting as on their first day. There have also been reports of side effects such as sleeping disorders, constipation, and a persistent fatigue among the followers.

The alternate day fasting has one major caveat: the 24 hours fast seems too long to handle (both physically and mentally). This regimen has been shown to cause sleeping issues due to the fact that night fasting turns on the SNS which keeps you alert and anxious rather than relaxed and sleepy during the night – thereby disrupting your sleep-wake cycle.

Furthermore, based on epidemiological evidence, it seems that the human body is programmed for a daily cycle of 24 hours and its optimum fasting threshold should be within the range of 18 hours. Anything beyond that may put your body in a starvation-catabolic mode which if done chronically, may lead to metabolic shutdown’s symptoms such as underactive thyroid, decreased sex hormones, loss of muscle mass, and declined energy.
Once a week or twice a week fasting
Both once or twice a week seem to be easier to follow than the alternate day fasting, only that these regimens are less effective than the alternate day fasting. Eating 3-4 square meals every day for most of the week is a serious compromise of the original IF concept, as it minimizes the weekly impact of fasting to merely 1-2 days per week.
Fasting every other week or every month
Worse than that is “fasting every other week” or every month. These IF programs seem to target the typical American dieter who is constantly looking for an “easy to follow” program to lose weight or improve health. The motto “better fasting once or twice per month than not fasting at all” is just an excuse to choose mediocrity over excellence.
Skipping dinner
The skipping dinner approach goes against your innate clock. This regimen may cause sleep disorders and similar side effects as the alternate day fasting diet, only that skipping dinner is less effective than the alternate day fasting due to its shorter fasting time.

Advocates of skipping dinner argue that breakfast is an important meal and should not be skipped. Nonetheless, the science clearly indicates the opposite – breakfast antagonizes the SNS and disrupts healthy circadian rhythms.

There is growing evidence that the typical breakfast is the most harmful meal of the day. A study by the Human Nutrition Research France (British Journal of Nutrition, 2000; 84:337-344) indicated that the typical high energy breakfast caused major adverse effects in the short and long terms. These included a strong inhibition of fat burning throughout the day, increase in serum triacylglycerol, decrease in HDL (good cholesterol), and over-glycemic reactions. The researchers concluded that high-energy breakfast does not appear to be favorable to health; they also indicated that the study’s results do not support the current advice to consume more energy at breakfast.

Note that the average consumption of energy at breakfast among breakfast eaters is between 15-20% of total daily energy intake. The typical breakfast composition: 12% of calories from protein, 25% from fat and 63% from carbohydrates.

Other reports coming from epidemiological surveys have been indicating that the consumption of high energy breakfast leads to a significant higher energy consumption for the whole day. Furthermore, big breakfast has shown to yield only a limited satiety effect which lasts merely 2 hours after breakfast. Overall, science confirms that the typical high carbohydrate breakfast tends to increase fat storage, increase body weight, and increase the risk for cardiovascular disease and long term health.

Note that some of the healthiest societies in the past did not eat breakfast. The word breakfast was not part of their vocabulary. The typical breakfast did not exist during Biblical times. In the original Hebrew text of the Bible, breakfast is called “pat shacharit” which meant a tiny piece of bread at dawn – nothing more. And there isn’t a single mention of breakfast in the new testimony; supper was the main meal of the day (hence, the Last Supper). The ancient Greeks and Romans were very particular about eating their main meal at night. According to Plutarch and Cicero, only slaves and farm animals were fed breakfast and lunch, as contrary to free men and soldiers who ate one meal per day at night.
Skipping breakfast
Skipping breakfast is certainly a better idea than skipping dinner. This protocol seems to be particularly viable for those who exercise during the morning hours. In this case a specially modified high protein lunch can serve as a post exercise recovery meal. The skipping breakfast regimen is nevertheless problematic.

Proponents of this approach speculate that skipping breakfast after a night fast yields about 16-18 hours of fasting including sleeping time. That seems good in theory but in reality this regimen doesn’t yield as many hours of fasting as claimed.

Here is why:

What really counts is your net fasting time, the gap between your meals minus digestion time. It typically takes your body between 6 – 8 hours to fully digest a hearty evening meal (depends on your meal density – content of protein and fat, etc). If for instance you start your evening meal at 8pm and finish eating at 9-10pm, your body will only shift into a fasting state by the early morning hours (about 3-6am). Hence, your body will not be in a fasting state for most of the night.

So when you skip your morning meal until noon, your net fasting time is merely 6 – 9 hours. That might be good but not enough to grant maximum impact. So what is the ideal way to fast? What should be your right meal frequency?
The 1 meal per day
The 1 meal per day is the only regimen that can accommodate your innate clock and maximize the beneficial effects you get from IF on a daily basis. That’s if your food choices and meal timing are adequate.

The 1 meal per day yields 14-16 hours of net fasting time provided that you have a window of about 2 hours to finish eating. And in the case that you have a feeding window of 4 hours, you’re still left with 12-14 hours of daily net fasting – sufficient to get you the results you’re looking for.

Other IF regimens yield a net fasting time which is either too long or too short. And most of these programs cause adverse side effects as they fail to accommodate your innate clock.
Can the 1 meal per day regimen satisfy your physical needs?
The 1 meal per day can accommodate your physical needs but you need to know how to modulate this regimen to fit your specific condition. For instance, if you routinely exercise during the day you’ll need to feed your muscle after your workout with a low glycemic recovery meal made with fast assimilating protein such as from quality whey. You can also feed your muscle before your workout as this will help increase your capacity to sustain intense exercise.
Can the 1 meal per day regimen accommodate super intense training?
If you’re engaged in max strength conditioning or MMA training, you should feed your muscle before and after your workout. Only that in this case your pre-workout meal should consist of protein and carbs. Note that max strength exercise work your fast glycolytic muscle fibers (Type IIB white fibers) which are inherently carb dependent. Having fast assimilating protein and carbs before your workout can help load glycogen in your muscle, nourish your fast fibers; and boost your max strength performance.

Your best choice for pre-exercise and post-exercise meal is quality whey protein, derived from raw milk of pasture fed or grass fed cows. For pre-workout carbs use nutrient dense fruits such as berries which can swiftly fuel your muscle with carbs and antioxidants and thereby enhance your performance while reducing the oxidative stress in your muscle to allow a faster recovery after your training.

Having an oatmeal or porridge an hour before training can be a viable option in case that you’re engaged in prolonged intense training sessions. Again, make sure your post-exercise recovery meal is low glycemic with no sugar added – to support your insulin and accommodate your IF. High glycemic meals negate the benefits you get from fasting.
So is it ok to eat whey protein during fasting? What other foods could be safely consumed during the fast? How often can you eat these foods and how much?
Foods that can be safely consumed during fasting

In the Warrior Diet Book, I introduced the concept of “undereating” as a viable alternative to water fasting. Undereating means minimizing your food intake to small servings of specific foods, which you’re allowed to consume in a certain frequency during your fast. If done properly, undereating can yield the same benefits of fasting and even more. Let me explain.

Most foods negate the effects of fasting, but there are some exceptions. Some foods can be safely eaten without compromising your fast. These include fast assimilating nutrient dense foods such as quality whey protein, green vegetables and berries. But you need to know how much you’re allowed to consume and how often. What makes these foods complimentary to fasting are the following properties:
They’re rich in antioxidant and anti-inflammatory nutrients
They target the same genes as fasting
They induce similar effects to those you get from fasting

Having small servings of whey protein, green vegetables or berries during your fast isn’t just ok, it may actually increase the benefits you get from fasting.

Being fast assimilating, these foods nourish your body without taxing your digestion, as they enhance the anti-inflammatory and metabolic modulating effects of your fasting. They also increase your body’s antioxidant defenses against reactive oxygen species (ROS) which tend to accumulate in your body during fasting and exercise as byproducts of fat breakdown and detox. ROS are unstable and highly reactive molecules which search, bind to, and destroy cellular lipids, proteins and DNA. The above foods help protect your body from that oxidative damage.

Most importantly, non-denatured whey protein, green vegetables and berries contain nutrients (antioxidant polyphenols, flavons, resveratrol, cyanidins, indoles, in plants; leucine, calcium and immune factors in whey) that target the same genes, transcriptional factors and pathways as fasting and exercise. Most notable among these are the SIRT-1 gene (the longevity gene) and the transcriptional co-activator PGC-1a, known to counteract oxidative stress and inflammatory pathways associated with declined health and increased mortality. SIRT-1 and PGC-1a increase mitochondrial biogenesis and thereby prevent the typical decline in mitochondrial function and cellular energy associated with aging and disease.
How much and how often can you eat these foods?

You can have small serving of whey protein (20-30g net protein) every 3-6 hours, depending on your level of physical activity. Those who do not exercise can have one or two servings of whey protein during their daily fast.

Similarly, you can have 8oz of berries or green vegetables (or freshly squeezed green vegetable juice) every 3-6 hours while you fast. Do not mix berries with whey unless you use that blend as a preworkout meal to support your strength conditioning.

Having a small serving of whey protein, berries or greens will hardly affect your body’s negative energy balance throughout the fast. Hence, if you eat them at the right amount and frequency, the above foods will not compromise your IF.

It may take science another 10 – 15 years to figure out the difference between water fasting and that mode of undereating. Nonetheless, based on what we know today about the nutritional properties of whey, berries and greens, and based on testimonials coming from Warrior Diet followers, and my own experience, I can tell you that having these foods during the fast isn’t just making it easier, but also makes it more effective and beneficial to your body than a sheer water fast.
In Conclusion

The one meal per day is the only regimen that can maximize the benefits of your IF on a daily basis.
Eat your main meal at night to accommodate your innate clock.
Whey protein, berries and greens compliment your fast if you know how much to consume and how often.
If you exercise during the day, have a recovery meal after your workout consisting of whey protein with no sugar added.
If you’re engaged in super intense training, have a pre-workout meal consisting of whey protein and berries.
If you’re engaged in prolonged intense training, have a bowl of oatmeal with your whey protein about an hour before your workout.

The science behind circadian rhythms

Circadian regulation of immune response and resistance to disease

Recent studies published by the PNAS, January 2012, revealed the existence of a specific nuclear receptor that mediates circadian regulation of innate immunity and resistance to disease. This circadian regulation is controlled by an internal mechanism which is highly conserved in humans and animals and orchestrates the daily patterns of diverse physiological processes such as wake/sleep cycles, feeding, and metabolism. According to the researchers, many diseases exhibit a disrupted circadian rhythmicity in their pathology…and lifestyles that disrupt the inherent timing system, such as chronic shift work, are associated with increased risk of cancer, metabolic disorders, cardiovascular disease and cerebrovascular disease. The researchers indicated that inflammatory diseases in particular exhibit strong time-of-day symptoms. They concluded that in humans, circadian rhythms are driven by a complex of feedback loops that mediate gene activities throughout a period of 24 hours and speculated that daily risk of infection is likely to be a direct consequence of wrong timing of activity and feeding.

The 24 hours cycle

A study by Czeisler et al. at Harvard University found that the range for normal healthy adults of all ages to be quite narrow: 24 hours and 11-16 minutes. This innate clock resets itself daily to the 24 hour cycle of the Earth’s rotation.

The sympathetic/parasympathetic division

Based on biology textbook (see Wikipedia – autonomic nervous system), the sympathetic and parasympathetic divisions typically function in opposition to each other. Consider sympathetic as “fight or flight” and parasympathetic as “rest and digest” or “feed and breed”. The sympathetic nervous system – corresponds with energy generation, and inhibits digestion. The parasympathetic nervous system – promotes “rest and digest” response, along with calming of the nerves.

Light and the innate clock

According to a 2010 study, completed by the Lighting Research Center, daylight has a direct effect on performance and wellbeing. The research showed that students who experience disruption in lighting schemes in the morning experienced disruptions in sleep patterns. Removing circadian light in the morning delays the dim light melatonin onset by 6 minutes a day, for a total of 30 minutes for five days.

Feeding and the innate clock

The feeding clock mechanism is the same as the light/dark driven clock controlled by the innate master clock – the suprachiasmatic nucleus (SCN) which is a cluster of neurons in the hypothalamus. But the machinery that inter-regulates feeding and the innate clock is located in a different part of the hypothalamus (DMA).

Recent studies reveal that mice on a daily 4 hours feeding window shifted their circadian rhythms so that their peak physical activity was before feeding and not after. This rhythm continued even if the mice were kept in constant darkness. Hence, the animals are inherently programmed for post action feeding and not the other way.

Heilbronn, L.K., Smith, S.R., Martin, C.K., Anton, S.D., Ravussin, E. Alternative-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81(1):69-73.

Weindruch, R., Walford, R.L. The retardation of aging and disease by dietary restriction. Springfield IL: Charles C. Thomas Publisher. 1988.

Ingram, D.K., Cutler, R.G., Weindruch, R., et al. Dietary restriction and aging: the initiation of a primate study. J Gerontol. 1990;45(5):B148-63

Hansen, B.C., Bodkin, N.L., Ortmeyer, H.K. Calorie restriction in nonhuman primates: mechanisms of reduced morbidity and mortality. Toxicol Sci 1999;52:56–60.

Lee, C.K., Klopp, R.G., Weindruch, R., Prolla, T.A. Gene expression profile of aging and its retardation by caloric restriction. Science 1999;285:1390–3.

Cao, S.X., Dhahbi, J.M., Mote, P.L., Spindler, S.R. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A 2001;98:10630–5.

Bauer, M., Hamm, A.C., Bonaus, M., et al. Starvation response in mouse liver shows strong correlation with lifespan prolonging processes. Physiol Genomics 2004;17:230–4.

Heymsfield, S.B., Darby, P.C., Muhlheim, L.S., Gallagher, D., Wolper, C., Allison, D.B. The calorie: myth, measurement, and reality. Am J Clin Nutr 1995;62(suppl):1034S–41S.

Stunkard, A.J. Nutrition, aging and obesity. In: Rockstein M, Sussman ML, eds. Nutrition, longevity, and aging. New York: Academic Press, 1976:253–84.

Wadden, T.A., Stunkard, A.J., Day, S.C., Gould, R.A., Rubin, C.J. Less food, less hunger: reports of appetite and symptoms in a controlled study of a protein-sparing modified fast. Int J Obes 1987;11:239–49.

Horton, T.J., Hill, J.O. Prolonged fasting significantly changes nutrient oxidation and glucose tolerance after a normal mixed meal. J Appl Physiol 2001;90:155–63.

Stote, K.S., Baer, D.J., Spears, K., Paul, D.R., Harris, G.K., Rumpler, W.V., Strycula, P., Najjar, S.S., Ferrucci, L., Ingram, D.K., Longo, D.L., Mattson, M.P. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 2007 Apr;85(4):981-8.

Fontana, L., Meyer, T.E., Klein, S., Holloszy, J.O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004;101(17):6659-63.

Mattson, M.P., Wan, R. Beneficial effects of intermittent fasting and calorie restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129-37.

Ahmet, I., Wan, R., Mattson, M.P., Lakatta, E.G., Talan, M. Cardioprotection by intermittent fasting in rats. Circulation. 2005;112:3115-21.

Anson, R.M., Guo, Z., de Cabo, R., et al. Intermittent fasting disassociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216-20.

Mattson, M.P. The need for controlled studies of the effects of meal frequency on health. Lancet. 2005;365:1978-80.

Speakman, J.R., Selman, C., McLaren, J.S., Harper, E.J. Living fast, dying when? The link between aging and energetics. J Nutr. 2002;132(suppl):1583S-97S.

Roth, G.S., Ingram, D.K., Lane, M.A. Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci. 2001;928:305-15.

Wan, R. Camandola, S., Mattson, M.P. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr. 2003;133:1921-9.

Fabry, P., Tepperman, J. Meal frequency – a possible factor in human pathology. Am J Clin Nutr. 1970;23:1059-68.

Jenkins, D.J., Wolever, T.M., Vukssan, V. et al. Nibbling versus gorging: metabolic advantages of increased meal frequency. N Engl J Med. 1989;321:929-34.

Martin, A., Normand, S., Sothier, M., Peyrat, J., Louche-Pelissier, C., Laville, M. Is advice for breakfast consumption justified? Results from a short-term dietary and metabolic experiment in young healthy men. Br J Nutr. 2000;84:337-44.

Autonomic Nervous System. From Wikipedia.

Gibbs, J.E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K.D., Boyce, S.H., Farrow, S.N., Else, K.J., Singh, D., Ray, D.W., Loudon, A.S. The nuclear receptor REV-ERBa mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):582-7.

Bechtold, D.A., Gibbs, J.E., Loudon, A.S. (2010) Circadian dysfunction in disease. Trends Pharmacol Sci 31(5):191–198.

Kumar, N., et al. (2010) Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology 151:3015–3025.

Storch, K.F., et al. (2007) Intrinsic circadian clock of the mammalian retina: Importance for retinal processing of visual information. Cell 130:730–741.

John W. Kimball. Circadian rhythms.

Wikipedia: Circadian rhythm.

Takahashi, J.S., Zatz, M. (September 1982.) “Regulation of circadian rhythmicity”. Science 217(4565): 1104-11.

Moore-Ede, M.C., Sulszman, F.M., Fuller, C.A. (1982). “The clocks that time us: Physiology of the circadian timing system”. Cambridge, Massachusetts: Harvard University Press. ISBN 0-674-13581-4.

Circadian rhythm. ( at the Open Directory Project.

Rodrigo, G., Carrera, J., Jaramillo, A. (2007). “Evolutionary mechanisms of circadian clocks”. Central European Journal of Biology 2(2):233-253.

De Castro, J.M., Elmore, D.K. (1988). Subjective hunger relationships with meal patterns in the spontaneous feeding behaviour of humans: evidence for a causal connection Physiology and Behavior 33, 561-569.

Festin, R.W., Rolls, B.J., Moran, T.H., Kelly, T.H., McNelis, A.L., Fischman, M.W. (1992). Caloric, but not macronutrient, compensation by humans for required-eating occasions with meals and snack varying in fat and carbohydrate American Journal of Clinical Nutrition 55, 331-342.

Frayn, K.N., Kingman, S.M. (1995). Dietary sugars and lipid metabolism in humans American Journal of Clinical Nutrition 62, 250S-263S.

Hercberg, S., Preziosi, P., Galan, P., Yacoub, N., Deheeger, M. (1996). La consommation du petit déjeuner dans l’étude du Val de Marne: la valeur nutritionnelle du petit déjeuner et ses relations avec l’équilibre global et le statut minéral et vitaminique (Breakfast consumption in the Val de Marne study: nutritional value of breakfast and its relationship to global diet balance and vitamin and mineral status) Cahiers de Nutrition et Diététique 31, S18-S25.

Hill, J.O., Prentice, A.M. (1995). Sugar and body weight regulation American Journal of Clinical Nutrition 62, 264S-273S.

Jeff, K.L., Young, S.N., Blundell, J.E. (1989). The effect of protein or carbohydrate breakfasts on subsequent plasma amino acid level, satiety and nutrient selection in normal males Pharmacology, Biochemistry and Behavior 34, 829-837.

Morgan, K.J., Zabik, M.E., Stampley, G.L. (1986). The role of breakfast in diet adequacy of the US adult population Journal of the American College of Nutrition 5, 551-563.

Morgan, K.J., Zabik, M.E., Stampley, G.L. (1986) Breakfast consumption patterns of US children and adolescents Nutrition Research 6, 635-646.

Nicklas, T.A., Bao, W., Webber, L.S., Berenson, G.S. (1993). Breakfast consumption affects adequacy of total daily intake in children Journal of the American Dietetic Association 93, 886-891.

Resnicow, K. (1991). The relationship between breakfast habits and plasma cholesterol levels in schoolchildren Journal of School Health 61, 81-85.

Rolls, B.J., Hetherington, M., Burley, V.J. (1988). The specificity of satiety: the influence of food of different macronutrient content on the development of satiety Physiology and Behavior 43, 145-153.

Ruxton, C.H.S., Kirk, T.R. (1997). Breakfast: a review of associations with measures of dietary intake, physiology and biochemistry British Journal of Nutrition 78, 199-213.

Stanton, J.L., Keast, D.R. (1989). Serum cholesterol, fat intake and breakfast consumption in the United States population Journal of the American College of Nutrition 8, 567-572.

Stubbs, R.J., Prentice, A.M., James, W.P. (1997). Carbohydrates and energy balance Annals of the New York Academy of Science 23, 44-69.

Truswell, A.S. (1994). Food carbohydrates and plasma lipids — an update American Journal of Clinical Nutrition 59, 710S-718S.

Wolever, T.M.S., Jenkins, D.A., Ocana, A.M., Rao, V.A., Collier, G.R. (1988). Second-meal effect: low-glycemic index foods eaten at dinner improve subsequent breakfast glycemic response American Journal of Clinical Nutrition 48, 1041-1047.

Wrinkler, G., Doring, A., Keil, U. (1999). Meal patterns in middle-aged men in southern Germany: results from the Monica Augsburg dietary survey 1984/85 Appetite 32, 33-37.

%d bloggers like this: